9 Các dạng bài ôn tập giữa HK1 Toán lớp 8 mới nhất

Các dạng bài tập ôn thi giữa học kì 1 môn Toán lớp 8 gồm: Rút gọn, Phân tích đa thức thành nhân tử, Tìm số chưa biết, Chia đa thức.

Và những bài tập hình học 8, những bài tập nâng cao dành cho học viên lớp 8 tự giải nâng cao kiến thức và kỹ năng .

Dạng 1: Rút gọn và các câu hỏi phụ

Bài 1: Rút gọn các biểu thức sau:

a)

b) {{(2x-1)}^{2}}-3(x-1)(x+2)-{{(x-3)}^{2}}

Bạn đang đọc: Các dạng bài ôn tập giữa HK1 Toán lớp 8

c) 2(x+2)(x-2)+(x+3)(2x-1)

d) (x-2)(2x-1)-3{{(x+1)}^{2}}-4x(x+2)

Bài 2: Cho biểu thức: A=(x-4)(x+3)-{{(3-x)}^{2}}

a ) Rút gọn biểu thức A

b) Tính giá trị biểu thức khi left| {x-1} right|=0,5

c) Tìm x để A = 2

Bài 3: Cho biểu thức: A=2(3x+1)(x-1)-3(2x-3)(x-4)

a) Rút gọn biểu thức A

b) Tính giá trị của tại x=-2

c) Tìm để A = 0

Dạng 2: Phân tích đa thức thành nhân tử

Bài 4: Phân tích thành nhân tử:

a) {{x}^{2}}-10x+25

b) {{x}^{2}}-64

c) 25{{(x+y)}^{2}}-16{{(x-y)}^{2}}

d) {{x}^{4}}-1

e) 2xy+3z+6y+xz

f) 5{{x}^{2}}+5xy-x-y

Bài 5: Phân tích các đa thức sau thành nhân tử:

a) {{x}^{2}}-2xy+{{y}^{2}}-xy+yz

b) y-{{x}^{2}}y-2x{{y}^{2}}-{{y}^{3}}

c) {{x}^{2}}-25+{{y}^{2}}+2xy

d) {{(x+y)}^{2}}-({{x}^{2}}-{{y}^{2}})

e) {{x}^{2}}+4x-{{y}^{2}}+4

f) 2xy-{{x}^{2}}-{{y}^{2}}+16

Bài 6: Phân tích các đa thức sau thành nhân tử:

a) {{x}^{2}}+8x+7

b) {{x}^{2}}-5x+6

c) {{x}^{2}}+3x-18

d) 3{{x}^{2}}-16x+5

Dạng 3: Tìm số chưa biết

Bài 7: Tìm biết:

a) x(2x-7)-2x(x+1)=7

b) 3x(x+8)-{{x}^{2}}-2x(x+1)=2

c) 3x(x-7)-2(x-7)=0

d) 7{{x}^{2}}-28=0

e) (2x+1)+x(2x+1)=0

f) 2{{x}^{3}}-50x=0

Dạng 4: Chia đa thức, chia đơn thức

Bài 8: Thực hiện phép chia

a) (15{{x}^{3}}{{y}^{2}}-6{{x}^{2}}y-3{{x}^{2}}{{y}^{2}}):6{{x}^{2}}y

b) displaystyle left( {-frac{3}{4}{{x}^{2}}y+5x{{y}^{2}}-frac{2}{7}xy} right):left( {frac{{-4}}{4}xy} right)

c) displaystyle (4{{x}^{2}}-9{{y}^{2}}):(2x-3y)

d) displaystyle ({{x}^{3}}-3{{x}^{2}}y+3x{{y}^{2}}-{{y}^{3}}):({{x}^{2}}-2xy+{{y}^{2}})

Bài 9: Thực hiện phép chia

a) ({{x}^{4}}-2{{x}^{3}}+2x-1):({{x}^{2}}-1)

b) (8{{x}^{3}}-6{{x}^{2}}-5x+3):(4x+3)

c) {{x}^{3}}-3{{x}^{2}}+3x-2):({{x}^{2}}-x+1)

d) (2{{x}^{3}}-3{{x}^{2}}+3x-1):({{x}^{2}}-x+1)

Bài 10: Tìm a để phép chia là phép chia hết

a) {{x}^{3}}+{{x}^{2}}+x+a chia hết cho x+1

Xem thêm: Khái niệm giáo dục là gì? Mục đích, vai trò của giáo dục

b) 2{{x}^{3}}-3{{x}^{2}}+x+a chia hết cho x+2

c) {{x}^{3}}-2{{x}^{2}}+5x+a chia hết cho x-3

d) {{x}^{4}}-5{{x}^{2}}+a chia hết cho {{x}^{2}}-3x+2

Bài tập hình học ôn thi giữa HK1

Bài 1: Cho hình bình hành ABCD có AD=2AB,widehat{A}={{60}^{o}}. Gọi E và F lần lượt là trung điểm của BC và AD.

a) Chứng minh AEbot BF

b ) Chứng minh tứ giác BFDC là hình thang cân .c ) Lấy điểm M đối xứng A qua B. Chứng minh tứ giác BMCD là hình chữ nhật .d ) Chứng minh M, E, D thẳng hàng .

Bài 2: Cho tam giác MNP, gọi E là trung điểm của NP. Gọi Q là điểm đối xứng của M qua N, D là giao điểm của QE và MP, gọi I là trung điểm của MD. Chứng minh rằng:

a) NI là đường trung bình của Delta MQD

b ) DE / / NIc ) MD = 2DP

Bài 3: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của BC, AC. Gọi H là điểm đối xứng của N qua M.

a ) Chứng minh những tứ giác BNCH và ABHN là hình bình hành .b ) Tam giác ABC thỏa mãn nhu cầu điều kiện kèm theo gì để tứ giác BNCH là hình chữ nhật .

Bài 4: Cho tam giác ABC cân tại A có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P, Q lần lượt là trung điểm của BG và CG.

a ) Tứ giác BNMC là hình gì ? Vì sao ?b ) Chứng minh MN / / PQ ; MN = PQ

c) Chứng minh Delta BCN=Delta CMB

d ) Chứng minh MNPQ là hình chữ nhật

Bài 5: Cho Delta ABC nhọn (AB

a ) Chứng minh tứ giác BHCK là hình bình hành .

b) Chứng minh BKbot AB

c ) Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân .d ) BK cắt HI tại G. Tìm điều kiện kèm theo của để tứ giác HGKC là hình thang cân .

Bài 6: Cho tam giác ABC, các đường trung tuyến BD, CE và BC = 8cm

a ) Chứng minh rằng : Tứ giác BEDC là hình thang .b ) Gọi M, N theo thứ tự là trung điểm của BE, CD. Tính MN ?

c) Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng: MI=IK=KN

Bài 7: Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC.

a ) Chứng minh rằng AH = DE

b) Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI//EK

Một số bài toán nâng cao

Bài 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:

a) {{x}^{2}}-8x+16

b) 4{{x}^{2}}+4x+1

c )

d) {{x}^{2}}-2x+7

e) {{x}^{2}}-8x-9

f) 9{{x}^{2}}-6x+11

g) 3{{x}^{2}}+6x+5

h) 2{{x}^{2}}-3x+5

i) {{x}^{2}}-3x+7

Bài 2: Tìm các giá trị nguyên của để biểu thức sau có giá trị nhỏ nhất

displaystyle A=frac{1}{{x-3}}

displaystyle B=frac{{7-x}}{{x-5}}

displaystyle C=frac{{5x-19}}{{x-4}}

Bài 3: Tìm giá trị lớn nhất của các biểu thức:

displaystyle A=5-3{{(2x-1)}^{2}}

Xem thêm: Bộ 50 đề thi Toán lớp 7 Học kì 2 năm học 2021 – 2022 có đáp án

displaystyle B=frac{1}{{2.{{{(x-1)}}^{2}}+3}}

displaystyle C=frac{{{{x}^{2}}+8}}{{{{x}^{2}}+2}}

Toán lớp 8 – Tags: đề cương toán 8, ôn thi giữa hk1, toán 8